3.48 \(\int \frac{\sin ^2(a+b x)}{\sqrt{c+d x}} \, dx\)

Optimal. Leaf size=130 \[ -\frac{\sqrt{\pi } \cos \left (2 a-\frac{2 b c}{d}\right ) \text{FresnelC}\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{\pi } \sqrt{d}}\right )}{2 \sqrt{b} \sqrt{d}}+\frac{\sqrt{\pi } \sin \left (2 a-\frac{2 b c}{d}\right ) S\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{d} \sqrt{\pi }}\right )}{2 \sqrt{b} \sqrt{d}}+\frac{\sqrt{c+d x}}{d} \]

[Out]

Sqrt[c + d*x]/d - (Sqrt[Pi]*Cos[2*a - (2*b*c)/d]*FresnelC[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])])/(2*Sq
rt[b]*Sqrt[d]) + (Sqrt[Pi]*FresnelS[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])]*Sin[2*a - (2*b*c)/d])/(2*Sqr
t[b]*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.234267, antiderivative size = 130, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3312, 3306, 3305, 3351, 3304, 3352} \[ -\frac{\sqrt{\pi } \cos \left (2 a-\frac{2 b c}{d}\right ) \text{FresnelC}\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{\pi } \sqrt{d}}\right )}{2 \sqrt{b} \sqrt{d}}+\frac{\sqrt{\pi } \sin \left (2 a-\frac{2 b c}{d}\right ) S\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{d} \sqrt{\pi }}\right )}{2 \sqrt{b} \sqrt{d}}+\frac{\sqrt{c+d x}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^2/Sqrt[c + d*x],x]

[Out]

Sqrt[c + d*x]/d - (Sqrt[Pi]*Cos[2*a - (2*b*c)/d]*FresnelC[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])])/(2*Sq
rt[b]*Sqrt[d]) + (Sqrt[Pi]*FresnelS[(2*Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[Pi])]*Sin[2*a - (2*b*c)/d])/(2*Sqr
t[b]*Sqrt[d])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{\sin ^2(a+b x)}{\sqrt{c+d x}} \, dx &=\int \left (\frac{1}{2 \sqrt{c+d x}}-\frac{\cos (2 a+2 b x)}{2 \sqrt{c+d x}}\right ) \, dx\\ &=\frac{\sqrt{c+d x}}{d}-\frac{1}{2} \int \frac{\cos (2 a+2 b x)}{\sqrt{c+d x}} \, dx\\ &=\frac{\sqrt{c+d x}}{d}-\frac{1}{2} \cos \left (2 a-\frac{2 b c}{d}\right ) \int \frac{\cos \left (\frac{2 b c}{d}+2 b x\right )}{\sqrt{c+d x}} \, dx+\frac{1}{2} \sin \left (2 a-\frac{2 b c}{d}\right ) \int \frac{\sin \left (\frac{2 b c}{d}+2 b x\right )}{\sqrt{c+d x}} \, dx\\ &=\frac{\sqrt{c+d x}}{d}-\frac{\cos \left (2 a-\frac{2 b c}{d}\right ) \operatorname{Subst}\left (\int \cos \left (\frac{2 b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{d}+\frac{\sin \left (2 a-\frac{2 b c}{d}\right ) \operatorname{Subst}\left (\int \sin \left (\frac{2 b x^2}{d}\right ) \, dx,x,\sqrt{c+d x}\right )}{d}\\ &=\frac{\sqrt{c+d x}}{d}-\frac{\sqrt{\pi } \cos \left (2 a-\frac{2 b c}{d}\right ) C\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{d} \sqrt{\pi }}\right )}{2 \sqrt{b} \sqrt{d}}+\frac{\sqrt{\pi } S\left (\frac{2 \sqrt{b} \sqrt{c+d x}}{\sqrt{d} \sqrt{\pi }}\right ) \sin \left (2 a-\frac{2 b c}{d}\right )}{2 \sqrt{b} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.225902, size = 126, normalized size = 0.97 \[ \frac{\sqrt{\frac{b}{d}} \left (-\sqrt{\pi } \cos \left (2 a-\frac{2 b c}{d}\right ) \text{FresnelC}\left (\frac{2 \sqrt{\frac{b}{d}} \sqrt{c+d x}}{\sqrt{\pi }}\right )+\sqrt{\pi } \sin \left (2 a-\frac{2 b c}{d}\right ) S\left (\frac{2 \sqrt{\frac{b}{d}} \sqrt{c+d x}}{\sqrt{\pi }}\right )+2 \sqrt{\frac{b}{d}} \sqrt{c+d x}\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^2/Sqrt[c + d*x],x]

[Out]

(Sqrt[b/d]*(2*Sqrt[b/d]*Sqrt[c + d*x] - Sqrt[Pi]*Cos[2*a - (2*b*c)/d]*FresnelC[(2*Sqrt[b/d]*Sqrt[c + d*x])/Sqr
t[Pi]] + Sqrt[Pi]*FresnelS[(2*Sqrt[b/d]*Sqrt[c + d*x])/Sqrt[Pi]]*Sin[2*a - (2*b*c)/d]))/(2*b)

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 108, normalized size = 0.8 \begin{align*} 2\,{\frac{1}{d} \left ( 1/2\,\sqrt{dx+c}-1/4\,{\sqrt{\pi } \left ( \cos \left ( 2\,{\frac{da-cb}{d}} \right ){\it FresnelC} \left ( 2\,{\frac{\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) -\sin \left ( 2\,{\frac{da-cb}{d}} \right ){\it FresnelS} \left ( 2\,{\frac{\sqrt{dx+c}b}{\sqrt{\pi }d}{\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{b}{d}}}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^2/(d*x+c)^(1/2),x)

[Out]

2/d*(1/2*(d*x+c)^(1/2)-1/4*Pi^(1/2)/(b/d)^(1/2)*(cos(2*(a*d-b*c)/d)*FresnelC(2/Pi^(1/2)/(b/d)^(1/2)*(d*x+c)^(1
/2)*b/d)-sin(2*(a*d-b*c)/d)*FresnelS(2/Pi^(1/2)/(b/d)^(1/2)*(d*x+c)^(1/2)*b/d)))

________________________________________________________________________________________

Maxima [C]  time = 1.85129, size = 747, normalized size = 5.75 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

-1/16*sqrt(2)*(((sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*cos(-1/4*pi
 + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(
0, d/sqrt(d^2))) + I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*cos(-2*(b*c - a*
d)/d) - (I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*cos(-1/4*pi + 1
/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/s
qrt(d^2))) - sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*sin(-2*(b*c - a*d)/d))*e
rf(sqrt(d*x + c)*sqrt(2*I*b/d)) + ((sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + s
qrt(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + I*sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0
, b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))
))*cos(-2*(b*c - a*d)/d) - (-I*sqrt(pi)*cos(1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) - I*sqrt
(pi)*cos(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))) + sqrt(pi)*sin(1/4*pi + 1/2*arctan2(0, b)
+ 1/2*arctan2(0, d/sqrt(d^2))) - sqrt(pi)*sin(-1/4*pi + 1/2*arctan2(0, b) + 1/2*arctan2(0, d/sqrt(d^2))))*sin(
-2*(b*c - a*d)/d))*erf(sqrt(d*x + c)*sqrt(-2*I*b/d)) - 8*sqrt(2)*sqrt(d*x + c)*sqrt(abs(b)/abs(d)))/(d*sqrt(ab
s(b)/abs(d)))

________________________________________________________________________________________

Fricas [A]  time = 2.05816, size = 281, normalized size = 2.16 \begin{align*} -\frac{\pi d \sqrt{\frac{b}{\pi d}} \cos \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) \operatorname{C}\left (2 \, \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) - \pi d \sqrt{\frac{b}{\pi d}} \operatorname{S}\left (2 \, \sqrt{d x + c} \sqrt{\frac{b}{\pi d}}\right ) \sin \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) - 2 \, \sqrt{d x + c} b}{2 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(pi*d*sqrt(b/(pi*d))*cos(-2*(b*c - a*d)/d)*fresnel_cos(2*sqrt(d*x + c)*sqrt(b/(pi*d))) - pi*d*sqrt(b/(pi*
d))*fresnel_sin(2*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-2*(b*c - a*d)/d) - 2*sqrt(d*x + c)*b)/(b*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (a + b x \right )}}{\sqrt{c + d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**2/(d*x+c)**(1/2),x)

[Out]

Integral(sin(a + b*x)**2/sqrt(c + d*x), x)

________________________________________________________________________________________

Giac [C]  time = 1.18342, size = 220, normalized size = 1.69 \begin{align*} \frac{\frac{\sqrt{\pi } d \operatorname{erf}\left (-\frac{\sqrt{b d} \sqrt{d x + c}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{d}\right ) e^{\left (\frac{2 i \, b c - 2 i \, a d}{d}\right )}}{\sqrt{b d}{\left (\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}} + \frac{\sqrt{\pi } d \operatorname{erf}\left (-\frac{\sqrt{b d} \sqrt{d x + c}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}}{d}\right ) e^{\left (\frac{-2 i \, b c + 2 i \, a d}{d}\right )}}{\sqrt{b d}{\left (-\frac{i \, b d}{\sqrt{b^{2} d^{2}}} + 1\right )}} + 4 \, \sqrt{d x + c}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/4*(sqrt(pi)*d*erf(-sqrt(b*d)*sqrt(d*x + c)*(I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((2*I*b*c - 2*I*a*d)/d)/(sqrt(b*d)
*(I*b*d/sqrt(b^2*d^2) + 1)) + sqrt(pi)*d*erf(-sqrt(b*d)*sqrt(d*x + c)*(-I*b*d/sqrt(b^2*d^2) + 1)/d)*e^((-2*I*b
*c + 2*I*a*d)/d)/(sqrt(b*d)*(-I*b*d/sqrt(b^2*d^2) + 1)) + 4*sqrt(d*x + c))/d